Abstract

Vascular permeability is a key factor in developing therapies for disorders associated with compromised endothelium, such as endothelial dysfunction in coronary arteries and impaired function of the blood-brain barrier. Existing fabrication techniques do not adequately replicate the geometrical variation in vascular networks in the human body, which substantially influences disease progression; moreover, these techniques often involve multi-step fabrication procedures that hinder the high-throughput production necessary for pharmacological testing. This paper presents a bioprinting protocol for creating multiple vascular tissues with desired patterns and sizes directly on standard six-well plates, overcoming existing resolution and productivity challenges in bioprinting technology. A simplified fabrication approach was established to construct six hollow, perfusable channels within a hydrogel, which were subsequently lined with human umbilical vein endothelial cells to form a functional and mature endothelium. The computer-controlled nature of 3D bioprinting ensures high reproducibility and requires fewer manual fabrication steps than traditional methods. This highlights VOP's potential as an efficient high-throughput platform for modeling vascular permeability and advancing drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.