Abstract

Chemoimmunotherapy has evolved as a standard treatment for advanced non-small cell lung cancer (aNSCLC). However, inevitable drug resistance has limited its efficacy, highlighting the urgent need for biomarkers of chemoimmunotherapy. A three-phase strategy to discover, verify, and validate longitudinal predictive autoantibodies (AAbs) for aNSCLC before and after chemoimmunotherapy was employed. A total of 528 plasma samples from 267 aNSCLC patients before and after anti-PD1 immunotherapy were collected, plus 30 independent formalin-fixed paraffin-embedded samples. Candidate AAbs were firstly selected using a HuProt high-density microarray containing 21,000 proteins in the discovery phase, followed by validation using an aNSCLC-focused microarray. Longitudinal predictive AAbs were chosen for ELISA based on responders versus non-responders comparison and progression-free survival (PFS) survival analysis. Prognostic markers were also validated using immunohistochemistry and publicly available immunotherapy datasets. We identified and validated a panel of two AAbs (MAX and DHX29) as pre-treatment biomarkers and another panel of two AAbs (MAX and TAPBP) as on-treatment predictive markers in aNSCLC patients undergoing chemoimmunotherapy. All three AAbs exhibited a positive correlation with early responses and PFS (p < 0.05). The kinetics of MAX AAb showed an increasing trend in responders (p < 0.05) and a tendency to initially increase and then decrease in non-responders (p < 0.05). Importantly, MAX protein and mRNA levels effectively discriminated PFS (p < 0.05) in aNSCLC patients treated with immunotherapy. Our results present a longitudinal analysis of changes in prognostic AAbs in aNSCLC patients undergoing chemoimmunotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.