Abstract
It remains a huge challenge to realize a high-throughput direct detection for pathogenic bacteria with high-sensitivity in practice. Here, we develop a typical two-dimensional (2D) composite semiconductor of BP@MoS2 with special synergistic chemical enhancement-mediated surface-enhanced Raman scattering (SERS) activity. The relative proportion of MoS2 and BP was rationally adjusted in the hydrothermal reaction to screen a composite sample with high charge transfer efficiency. Furthermore, the optimal BP@MoS2 nanocomposites were integrated with polydimethylsiloxane (PDMS) film based on a hydrophilic-hydrophobic scheme to improve the collection and on-site monitoring capability of SERS substrate. Unlike the conventional detection chip, this hydrophilic-hydrophobic model could facilitate the block design of active areas on the PDMS matrix, which was benefit for the high-throughput detection. More importantly, this SERS substrate was applied to directly monitor urinary tract pathogens of Escherichia coli, facilitating satisfactory recoveries between 90% and 110%. Overall, the as-proposed PDMS-BP@MoS2 SERS substrate exhibited advantages in the collection, quantification, and high-throughput fingerprint recognition of pathogenic bacteria, offering a new avenue for the clinical detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have