Abstract

MXenes, a new family of two-dimensional materials, have recently attracted increasing attention due to their unique properties for a wide range of potential applications. Herein, we synthesize Ti3C2Tx/poly(vinyl alcohol) (PVA) composites and investigate the effects of the thermal properties of MXene by temperature-dependent Raman spectroscopy and polarized-laser power-dependent Raman spectroscopy. Compared to the Ti3C2Tx MXene, the PVA significantly improves the thermal stability of Ti3C2Tx by reducing the thermal coefficient of the Eg1 mode from −0.06271 to −0.03357 cm–1/K, which is attributed to the strong Ti–O bonds formed between the MXene and PVA polymer confirmed by the X-ray photoelectron spectroscopy results. Meanwhile, the thermal conductivities of Ti3C2Tx and Ti3C2Tx/PVA composites reach as high as about 55.8 and 47.6 W/(m K), respectively. Overall, this work will contribute to extend the MXene applications in terms of polymer-based nanocomposites and improve the reliability of the related devices effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.