Abstract

Aluminum nitride has been widely used as heat-management material for large-scale integrated circuits and semiconductor packages because of its excellent insulation, high thermal conductivity, low dielectric constant and loss, similar expansion coefficient to that of silicon, and non-toxicity. However, the increase of oxygen content caused by the hydration of aluminum nitride powder during storage often decreases the thermal conductivity of aluminum nitride ceramics. In this work, we propose an approach for preparing high-thermal-conductivity AlN ceramics via octyltrichlorosilane-modified AlN powder. The octyltrichlorosilane reacted with the hydroxyl group on the surface of the AlN powder forming a siloxane protective layer. The protective layer not only enhanced the water contact angle of AlN powder from 34.8° to 151°, but also ensured the phase of AlN powder did not change in the distilled water at 25 °C for 72 h. High-thermal-conductivity AlN ceramics up to 186 W·m−1·K−1 were successfully prepared based on the modified AlN powder which had been stored for one year. This work provides a simple, effective, and practical method for the stable preparation of high-thermal-conductivity AlN ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call