Abstract
Phase change materials (PCMs) applied in energy storage and temperature control system are important for energy conservation and environmental protection. In this work, structure-adjustable water-borne polyurethane (WPU)/boron nitride (BN) aerogels were synthesized via directional freeze-drying method, and used as supporting scaffolds to confine paraffin wax (PW) and obtain composite phase change materials. The three-dimensional (3D) porous thermal conductivity network of BN was derived by the in-situ ice crystal mound in aerogel, which endows the PW/WPU/BN composite PCM-2.5 with high thermal conductivity (0.96 W m−1 K−1) and high energy storage density (140.04 J/g). Shape-stabilized PCMs with high thermal conductivity and excellent electrical insulation prepared by the simple method have great potential for the thermal management of electronic products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.