Abstract
Phase change materials (PCMs) applied in the energy storage and temperature control system are crucial for energy conservation and environmental protection. In this work, boron nitride (BN)@chitosan (CS) scaffolds with three-dimensional (3D) porous structures were fabricated. And effective thermal conductive pathways could be created in the resultant scaffolds. By introducing polyethylene glycol (PEG) into the BN@CS scaffolds, composite PCMs with large latent heat of fusion and excellent shape-stability were obtained. In particular, a high thermal conductivity up to 2.77 W m−1 K−1 could be reached at a relatively low content of BN (27 wt%). Moreover, they also exhibited a satisfactory energy storage density of 136 J g−1. This work demonstrated a facile and environmentally friendly strategy to simultaneously achieve enhancement of thermal conductivity, high energy storage density, shape stability and outstanding thermal repeatability for composite PCMs, which held promising potential in waste heat recovery, cooling system and temperature control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.