Abstract

Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.