Abstract

AbstractPoly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability, low glass transition temperatures (Tg), and relatively low mechanical property have limited its applications. To improve the thermal and mechanical properties of PPC, functionalized graphite oxide (MGO) was synthesized and mixed with PPC by a solution intercalation method to produce MGO/PPC composites. A uniform structure of MGO/PPC composites was confirmed by X‐ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer‐sized dispersion of layered graphite in polymer matrix, MGO/PPC composites exhibit improved thermal and mechanical properties than pure PPC. When the MGO content is 3.0 wt %, the MGO/PPC composites shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call