Abstract

High temperature gas sensors based on catalytic metal-insulator-silicon carbide (MISiC) devices are developed both as capacitors and Schottky diodes. A maximum operation temperature of 1000 degrees C is obtained for capacitors based on 4H-SiC, and all sensors work routinely for several weeks at 600 degrees C. Reducing gases like hydrocarbons and hydrogen lower the flat band voltage of the capacitor and the barrier height of the diode. The time constants for the gas response are in the order of milliseconds and because of this good performance the sensors are tested for combustion engine control. For temperatures around 600 degrees C total combustion occurs on the sensor surface and the signal is high for fuel in excess and low for air in excess. At temperatures around 400 degrees C the response is more linear. The high temperature operation causes interdiffusion of the metal and insulator layers in these devices; and this interdiffusion has been studied. At sufficiently high temperatures the inversion capacitance shows different levels for hydrogen free and hydrogen containing ambients, which is suggested to be due to a reversible hydrogen annealing effect at the insulator-silicon carbide interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.