Abstract

High-temperature operation of metal–semiconductor–metal (MSM) UV photodetectors fabricated on pulsed laser deposited β-Ga2O3 thin films has been investigated. These photodetectors were operated up to 250 °C temperature under 255 nm illumination. The photo to dark current ratio of about 7100 was observed at room temperature and 2.3 at a high temperature of 250 °C with 10 V applied bias. A decline in photocurrent was observed until a temperature of 150 °C beyond which it increased with temperature up to 250 °C. The suppression of the UV and blue band was also observed in the normalized spectral response curve above 150 °C temperature. Temperature-dependent rise and decay times of temporal response were analyzed to understand the associated photocurrent mechanism at high temperatures. Electron–phonon interaction and self-trapped holes were found to influence the photoresponse in the devices. The obtained results are encouraging and significant for high-temperature applications of β-Ga2O3 MSM deep UV photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.