Abstract

Within physical vapor deposited Hf-Si-B2±z thin films, selective diffusion-driven oxidation of Si is identified to cause outstanding oxidation resistance at temperatures up to 1500 °C. After 60 h at 1200 °C, the initially 2.47 µm thin Hf0.20Si0.23B0.57 thin film exhibits a dense oxide scale of only 1.56 µm. The thermally induced decomposition of metastable Hf-Si-B2±z leads not only to the formation of Si precipitates within the remaining thin film (related to a non-homogenous Si distribution after the deposition) but also to pure Si layers on top and bottom of the Hf-Si-B2±z coatings next to the excellent adherend SiO2 based scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call