Abstract

The high-temperature oxidation behaviour of pure Ni3Al alloys in air was studied above 1000°C. In isothermal oxidation tests between 1000 and 1200°C, Ni3Al showed parabolic oxidation behavior and displayed excellent oxidation resistance. In cyclic oxidation tests between 1000 and 1300°C, Ni3Al exhibited excellent oxidation resistance between 1000 and 1200°C, but drastic spalling of oxide scales was observed at 1300°C. When Ni3Al was oxidized at 1000°C, Al2O3 was present as θ-Al2O3 in a whisker form. But, at 1100°C the gradual transformation of initially formed metastable θ-Al2O3 to stable α-Al2O3 was observed after oxidation for about 20 hr. After oxidation at 1200°C for long times, the formation of a thick columnar-grain layer of α-Al2O3 was observed beneath a thin and fine-grain outer layer of α-Al3O3. The oxidation mechanism of pure Ni3Al is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.