Abstract
A newly developed Ti–46Al–6Nb-0.5W-0.5Cr-0.3Si-0.1C alloy was oxidized isothermally and cyclically in air, and its high-temperature oxidation behavior was investigated. When the alloy was isothermally oxidized at 700 °C for 2000 h, the weight gain was only 0.15 mg/cm2. The parabolic rate constant, kp (mg2/cm4·h), measured from isothermal oxidation tests was 0.002 at 900 °C and 0.009 at 1000 °C. Such excellent isothermal oxidation resistance resulted from the formation of the dense, continuous Al2O3 layer between the outer TiO2 layer and the inner (TiO2-rich, Al2O3-deficient) layer. The alloy also displayed good cyclic oxidation resistance at 900 °C. Some noticeable scale spallation began to occur after 68 h at 1000 °C during the cyclic oxidation test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.