Abstract

The high-temperature mechanical properties of a newly developed silicate-based glass sealant, designated as GC-9, have been studied for use in planar solid oxide fuel cell (pSOFC). Four-point bending tests were conducted at room temperature, 550 °C, 600 °C, 650 °C, 700 °C and 750 °C to investigate the variation of flexural strength, elastic modulus, and stress relaxation with temperature for the given glass sealant. Weibull statistic analysis was applied to describe the fracture strength data. The results indicated that the flexural strength was increased with temperature when the testing temperature was below the glass transition temperature ( T g, 668 °C). This was presumably caused by a crack healing effect taking place at high temperatures for glasses. However, with a further increase of temperature to a level higher than T g, significant stress relaxation was observed to cause extremely large deformation without breaking the specimen. When the controlled displacement rate was increased by an order of magnitude, the stress relaxation effect at 750 °C became less effective. However, the mechanical stiffness of the given glass was significantly reduced at a temperature higher than T g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.