Abstract

Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm × 25.4 mm × 406.4 mm) representing each wood type (corewood and outerwood) at heights 2.4, 7.3, and 12.2 m from three trees sampled from 135 loblolly pine ( Pinus taeda L.) stands distributed across the natural range of the species. An analysis of variance was conducted to detect the effect of physiographpic region, height, and wood type on each property. Significant regional variation was observed for MOE, MOR, and SG for both wood types with high values in the Gulf and South Atlantic Coastal Plains compared with other regions. A significant height-related trend in MOE, MOR, and SG within a tree was identified; MOE and MOR increased in corewood and decreased in outerwood with height. Maps showing regional variation in MOE and MOR at different heights by wood type were produced and showed significant variation for both properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call