Abstract

Molecular dynamics (MD) simulations are carried out to determine interface strength between aluminum (metal) and Cu50Zr50 (metallic glass) at temperature of 500 K and at strain rate of 108 s-1. Simulation box of size 100 Å (x) × 110 Å (y) × 50 Å (z) is used for the above studies. At first Al-Cu50Zr50 crystalline interface model is built with the base layer-Al of 50 A and the top layer-Cu50Zr50 of 55 Å along y-direction. Later Cu50Zr50 metallic glass is obtained by quenching at a cooling rate of 4 x 1012 Ks-1. NPT ensemble is used in metallic glass preparation simulation. The interface model is then equilibrated at 300 K for 500 ps to relieve the internal stresses. EAM (Embedded Atom Method) potential is used for modelling the interaction between Al-Cu-Zr atoms. The interface strength of Al-Cu50Zr50 model interface is determined by applying load in the directions normal (mode-I) and parallel (mode-II) to the interface. NVT ensemble is used for the deformation studies. In mode-I for perfect and cracked interface, the interface fractures in the Al-region via necking. Sticking of the Al-atoms to the metallic glass is observed in both the loading conditions. Also, multiple voids are nucleated at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call