Abstract

Abstract High temperature hydrogen sulfide corrosion of carbon steel and low chrome alloys has become a serious problem in the petroleum industry in connection with the increasing use of high pressure hydrogenation and dehydrogenation processes for upgrading petroleum fractions. The effect of temperature, pressure and hydrogen sulfide concentration on the corrosion rate of a wide range of commonly used carbon steels and alloys has been determined in laboratory tests. It has been established that the low chrome alloys (up to 5 percent chromium) which have been used to combat sulfur corrosion in fractionation and cracking equipment, show little or no advanage over carbon steel in resisting attack by hydrogen sulfide. Of the conventional alloy steels tested, only the 18-8 chrome nickel and higher alloys have shown good resistance to this type of corrosion over a wide range of pressure, temperature and hydrogen sulfide concentration. It was found that aluminum coated steels also showed very good corrosion resistance. Three methods were proposed for minimizing hydrogen sulfide corrosion: (1) Reduction of hydrogen sulfide in process streams, (2) Use of chrome-nickel alloys, and (3) Protection of metals by aluminum coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.