Abstract
Hydrogen sulfide is an irritant and chemical asphyxiant gas that exerts its primary toxic effects on the respiratory and neurological systems. Exposure to hydrogen sulfide above a threshold value of 200-300 ppm is characterized by the sudden onset of hemorrhagic pulmonary edema. The purpose of this study was to determine whether this response is associated with changes in the surface properties of pulmonary surfactant. Bronchoalveolar lavage fluid was retrieved from the lungs of Fischer 344 rats exposed to two concentrations of hydrogen sulfide or fresh air for 4 h. Surface tension-lowering properties were assayed using a captive bubble surface tensiometer. Lung injury was assessed by histopathology and measurements of total protein and lactate dehydrogenase activity in the lavagate. Marked abnormalities in surfactant activity were demonstrated in the lavagates from rats exposed to the highest concentration (300 ppm) of hydrogen sulfide. These involved the properties of adsorption to the air-water interface and surface tension lowering under quasi-static interfacial compression. Exposure to 200 ppm hydrogen sulfide had no effect on minimum surface tension despite a significant increase in protein and lactate dehydrogenase in the lavagate. This would suggest a threshold-type response for the inhibition of surfactant activity by hydrogen sulfide. In vitro studies using normal rat surfactant showed that the abnormalities in surfactant activity were due to inhibitors in the edema fluid and not to a direct effect of sulfide on surfactant. The pathophysiological consequences of increased alveolar surface tension after hydrogen sulfide exposure may need to be considered in the clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.