Abstract
In this study, the effects of microalloying (Nb,V) and aluminum on the constitutive flow behavior and static recrystallization (SRX) characteristics of microalloyed TWIP steels (Fe-20Mn-0.6C-Al-(Nb,V)) have been investigated under hot deformation conditions. Compression tests in a Gleeble simulator, including the double-hit technique, enabled the acquisition of flow stress and recrystallization data. These were analyzed to determine the powers of strain and strain rate as well as the activation energies of deformation and recrystallization (Q def and Q rex). Aluminum increased the flow stress and activation energy of deformation and delayed the onset of dynamic recrystallization of microalloyed TWIP steels. While microalloying with V up to 0.3 pct seems to have little or no effect on the SRX kinetics, microalloying with 0.026 pct Nb significantly slowed down the SRX rate, similarly as in the case of low C-Mn steels. Addition of high aluminum (4.9 pct) marginally retarded the SRX kinetics in comparison with the steels with low aluminum (1.5 pct), with or without microalloying with V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.