Abstract

Numerous applications call for electronics capable of operation at high temperatures where conventional Si-based electrical devices fail. In this work, we show that graphene-based devices are capable of performing in an extended temperature range up to 500 °C without noticeable thermally induced degradation when encapsulated by hexagonal boron nitride (hBN). The performance of these devices near the neutrality point is dominated by thermal excitations at elevated temperatures. Non-linearity pronounced in electric field-mediated resistance of the aligned graphene/hBN allowed us to realize heterodyne signal mixing at temperatures comparable to that of the Venus atmosphere (∼460 °C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.