Abstract

The creep behavior of powder metallurgy (PM) 6061 Al, which has been used as a metal matrix alloy in the development of discontinuous silicon carbide reinforced aluminum (SiCAl) composites, has been studied over six orders of magnitude of strain rate. The experimental data show that the steady-state stage of the creep curve is of short duration; that the stress dependence of creep rate is high and variable; and that the temperature dependence of creep rate is much higher than that for self-diffusion in aluminum. The above creep characteristics are different from those documented for aluminum based solid-solution alloys but are similar to those reported for discontinuous SiCAl composites and dispersion-strengthened (DS) alloys. Analysis of the experimental data shows that while the high stress dependence of creep rate in 6061 Al, like that in DS alloys, can be explained in terms of a threshold stress for creep, the strong temperature dependence of creep rate in the alloy is incompatible with the predictions of available threshold stress models and theoretical treatments proposed for DS alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call