Abstract

AbstractThe iron based alloy Haynes 556 has been recently used in hydrocarbon and carbonaceous environments due to its excellent resistance to carburization. This alloy outperforms stainless steels and some of the best commercial carburization‐resistant nickel‐based alloys. This paper is concerned with the behavior of alloy Haynes 556 in high temperature carburizing environments containing trace amounts of oxygen. Thermal cyclic exposures were conducted in 2% and 10% CH4/H2 gas mixtures at 800, 900, 1000, and 1100°C for 10 cycles, 50 h each. Carbon activities, oxygen partial pressures, and stabilities of oxides and carbides were used to identify the role played by the reaction products in providing protection. Thermodynamic analyses, weight changes, and microstructural characterization were correlated with environmental parameters and alloy composition to elucidate the causes of its marked resistance to carburization. The results indicate protective character in both gas mixtures under all exposure conditions except the most aggressive, namely 1100°C in 10% CH4/H2 gas mixture. Below 1000°C, the formation of Cr, Al, and Si oxides along with Cr carbides provides the primary means of protection. Catastrophic failure at 1100°C was manifested by extensive fracture and crack development within the outer substrate surface in the 10% CH4/H2 gas mixture resulting in a dramatic increase in weight gain. This has been attributed to the increased carbon pick‐up, coupled with the loss of the protective outer scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call