Abstract

Abstract This article reports on the thorough characterization of structural-phase transformation in amorphous TiAlBSiN coating after high temperature annealing at 900 °C in ambient air. The influence of annealing on the tribo-mechanical behavior of the coating at nano and micro scale was also examined. The research included multiple experimental techniques, i.e. AFM, SEM, TEM, HR-TEM, EDS, XPS and Raman spectroscopy. Experiments showed that the amorphous phase of the TiAlBSiN coating undergoes a structural transformation, evidenced in the changes of parameters such as topological and chemical short-range order after the post-deposition annealing at 900 °C in air. The observed structural transformation, leads to a phase separation with the formation of a three dimensional nc-TiAl 3 /a-SiBN(O) nanocomposite structure. The relative increase of hardness, reduced elastic modulus, H/Er ratio and H 2 /E 3 r ratio after high temperature treatment of TiAlBSiN coatings is also reported. The complex interdependency between chemistry, morphology and relative composition of the amorphous TiAlBSiN coating phase, during the high temperature treatment, with the respective change of the tribo-mechanical characteristics, are evidence of the improvement of the coating properties in response to the environmental conditions and high temperature. This work contributes particularly to the development and understanding of flexible nanocomposite protective coatings and their changes at high temperature of operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.