Abstract
High temperature and hypoxia in water due to global warming threaten the growth and development of aquatic animals. In natural or cultured environments, stress usually does not occur independently, whereas the synergistic effect of high temperature and hypoxia on Chinese mitten crab (Eriocheir sinensis) are rarely reported. In this study, 450 juvenile crabs were equally divided into control group (24 °C ± 0.5 °C, DO 6.8 ± 0.1 mg/L), hypoxia stress group (24 °C ± 0.5 °C, DO 1 ± 0.1 mg/L) and combined stress group (30 °C ± 0.5 °C, DO 1 ± 0.1 mg/L), and the intestinal health status, microbial diversity and metabolite profiles were evaluated for 24 h treatment. The results showed that hypoxia stress induced the expression level of pro-inflammatory related genes were significantly up-regulated in intestine of juvenile E. sinensis, and intestinal peritrophic membrane factor related genes were significantly down-regulated. High temperature further amplified the effects of hypoxia on pro-inflammatory and peritrophic membrane factor-related genes. Interesting, hypoxia stress induced a significant up-regulated of intestinal antioxidant-related genes, whereas high temperature reversed this trend. In addition, single stress or/and combined stress led to changes in intestinal microbiota diversity and abundance, and intestinal metabolite profiles. Compared with hypoxia stress, the synergistic effect of high temperature and hypoxia led to an increase in the abundance of pathogenic bacteria and a decrease in the abundance of probiotic bacteria. Moreover, intestinal metabolic pathways were significantly changed, especially amino acid metabolism and glycerophospholipid metabolism. Therefore, the results indicated that hypoxia stress could induce intestinal inflammatory response and oxidative stress, and lead to abnormal changes in intestinal microbiota and metabolic profiles, whereas high temperature further aggravate the toxic effects of hypoxia on the intestine. This study preliminarily revealed the synergistic toxic effects of high temperature and hypoxia on the intestine of juvenile E. sinensis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.