Abstract

We report the results of experimental investigations on structural, magnetic, resistivity, caloric properties of Fe$_2$RhZ (Z=Si,Ge) along with \textit{ab-initio} band structure calculations using first principle simulations. Both these alloys are found to crystallize in inverse Heusler structure but with disorder in tetrahedral sites between Fe and Rh. Fe$_2$RhSi has saturation moment of 5.00 $\mu_B$ and while its counterpart has 5.19 $\mu_B$. Resistivity measurement reveals metallic nature in both of them. Theoretical simulations using generalized gradient approximation(GGA) predict inverse Heusler structure with ferromagnetic ordering as ground state for both the alloys. However it underestimates the experimentally observed moments. GGA+$U$ approach, with Hubbard $U$ values estimated from density functional perturbation theory helps to improve the comparison of the experimental results. Fe$_2$RhSi is found to be half metallic ferromagnet while Fe$_2$RhGe is not. Varying $U$ values on Fe and Rh sites does not change the net moment much in Fe$_2$RhSi, unlike in Fe$_2$RhGe. Relatively small exchange splitting of orbitals in Fe$_2$RhGe compared to that of Fe$_2$RhSi is the reason for not opening the band gap in the minority spin channel in the former. High ordering temperature and moment make Fe$_2$RhSi useful for spintronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.