Abstract

Highly stretchable strain sensors based on conducting polymer hydrogel are rapidly emerging as a promising candidate toward diverse wearable skins and sensing devices for soft machines. However, due to the intrinsic limitations of low stretchability and large hysteresis, existing strain sensors cannot fully exploit their potential when used in wearable or robotic systems. Here, a conductingpolymer hydrogel strain sensor exhibiting both ultimate strain (300%) and negligible hysteresis (<1.5%) is presented. This is achieved through a unique microphase semiseparated network design by compositing poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanofibers with poly(vinyl alcohol) (PVA) and facile fabrication by combining 3D printing and successive freeze-thawing. The overall superior performances of the strain sensor including stretchability, linearity, cyclic stability, and robustness against mechanical twisting and pressing are systematically characterized. The integration and application of such strain sensor with electronic skins are further demonstrated to measure various physiological signals, identify hand gestures, enable a soft gripper for objection recognition, and remote control of an industrial robot. This work may offer both promising conducting polymer hydrogels with enhanced sensing functionalities and technical platforms toward stretchable electronic skins and intelligent robotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.