Abstract
Conducting polymer hydrogels have emerged as promising materials to fabricate highly sensitive strain sensors. However, due to weak bindings between conducting polymer and gel network, they usually suffer from limited stretchability and large hysteresis, failing to achieve wide-range strain sensing. Herein, we combine hydroxypropyl methyl cellulose (HPMC), poly (3,4-ethylenedioxythiophene):poly (styrene sulfonic acid) (PEDOT: PSS) with chemically cross-linked polyacrylamide (PAM) to prepare a conducting polymer hydrogel for strain sensors. Owing to abundant hydrogen bonds between HPMC, PEDOT:PSS and PAM chains, this conducting polymer hydrogel exhibits high tensile strength (166 kPa), ultra-stretchability (>1600 %) and low hysteresis (<10 % at 1000 % cyclic tensile strain). The resultant hydrogel strain sensor shows ultra-high sensitivity, wide strain sensing ranges of 2–1600 %, and excellent durability and reproducibility. Finally, this strain sensor can be used as wearable sensor to monitor vigorous human movement and fine physiological activity, and services as bioelectrodes for electrocardiograph and electromyography monitoring. This work provides new horizons to design conducting polymer hydrogels for advanced sensing devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.