Abstract

Steel surfaces were thermally sprayed with nickel chromium boron (NCB) powder (with and without tungsten carbide) using an oxy-acetylene torch. The sprayed (hard) surfaces and substrate were characterized for abrasive wear properties. Test parameters such as load and sliding distance were varied. A significant improvement in the abrasive wear resistance (inverse of wear rate) was noted for the thermally sprayed surfaces as compared to that of the substrate. Wear surfaces, subsurface regions, and debris were examined in order to ascertain the operating wear mechanisms. Substrate (mild steel), because of its low hardness, suffered severe wear through the cutting, ploughing, and wedging action of the hard abrasive (silicon carbide). Deep cuts on the worn surface, a bulky transfer layer, subsurface cracks, and large-size debris were observed. However, wear was reduced due to high hardness of the layer of NCB powder on the substrate, which resisted the penetration of abrasive into the surface. Presence of tungsten carbide in the layer of NCB powder further reduced the wear of the corresponding specimen because of very high hardness of the tungsten carbide. Shallow wear grooves and finer debris were observed for the NCB coating with and without tungsten carbide. Cutting was the predominating wear mechanism in the case of coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.