Abstract

Three medium carbon low alloyed MnCrB cast steels containing different Cr contents (0.3%, 0.6%, and 1.2%) were designed and the effect of Cr contents on the microstructure, mechanical properties and high stress abrasive wear behavior of the cast steels after 850 °C air-cooling and 220 °C tempering was studied. The results show that the hardenability of the MnCrB cast steels was excellent. The microstructure of the cast steels with low Cr contents (0.3% or 0.6%) consists of granular bainite and lower bainite/martensite multiphase. With increasing of Cr content, the formability of martensite was improved, the hardness and wear-resistance increased, but the impact toughness decreased in that more bainite was replaced by martensite. The air-cooled MnCrB cast steel containing 0.6% Cr, with granular bainite and lower bainite/martensite multiphase, exhibited excellent combination of strength, hardness, ductility, and impact toughness. In addition, its abrasive wear-resistance was 30% more than that of Hadfield cast steel in the high stress abrasive wear condition. This air-cooled MnCrB cast steel by simple alloying scheme and heat treatment has the advantages of high-performance, low cost, and environmentally friendly. It is a potential advanced wear-resistant cast steel for low- or even medium-impact abrasive conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call