Abstract

ObjectiveDevelopment of high strength dental composites with adhesive, antibacterial and re-mineralizing potential. MaterialsUrethane and triethylene glycol dimethacrylates were combined with HEMA (10 or 20wt%) and 2MP (2 or 10wt%), antibacterial chlorhexidine (2.5wt%) and chemical cure initiators. Reactive mono/tri calcium phosphate (CP) mixed with silica/silicon carbide nanoparticles (S) (CP:S weight ratio 1:2 or 2:1) was added (50wt%). ResultsDecreasing CP/S ratio and HEMA content reduced monomer conversion at 15min from 93 to 63%. Conversely, decreasing CP/S increased initial “dry” compressive (137–203MPa) and flexural (79–116MPa) strength. With high HEMA content, these decreased by ∼15–20MPa upon 24h water storage. With low HEMA content, average decline was <8MPa due to reduced water sorption. Early water sorption induced mass increase, volume expansion, mono calcium phosphate dissolution and chlorhexidine release, were proportional to the initial calcium phosphate content. Furthermore, they increased ∼1.5 fold upon raising HEMA wt%. These diffusion controlled processes and strength decline slowed after 24h as phosphates reaction bound water within the materials. Increasing 2MP concentration reduced calcium release but did not affect strength. Formulations with high CP/S indicated greater antibacterial activity in agar diffusion and in vitro biofilm tests. SignificanceNew material use beneath a conventional composite could potentially reduce high failure rates associated with residual caries and bacterial microleakage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.