Abstract

This work presents the results of an investigation on the atomic hydrogen chemisorption of metallurgical graphene enhanced by plasma discharge at low pressures in the range of 5–20 Pa. It was experimentally revealed that hydrogenated graphene is not stable when in contact with humid oxygen or humid air. Moreover, thermal desorption experiments showed that hydrogen can be released from hydrogenated graphene at relatively low temperatures. Additionally, a numerical simulations were performed of the pressure changes inside the nanogaps of hydrogen storage nanocomposites under various durations of the desorption cycle. Experimental fatigue resistance tests performed along with simultaneous electrical resistance measurements of the graphene sheets were also conducted. Metallurgical graphene shows tensile fatigue performances that might be sufficient to resist the pressure pulses and strain that arise in the gaps of graphene-based hydrogen storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.