Abstract

Here, we have approached to discover new aluminum (Al) alloys with the assistance of artificial intelligence (A.I.) for the enhanced mechanical property. A high prediction rate of 7xxx series Al alloy was achieved via the Bayesian hyperparameter optimization algorithm. With the guide of A.I.-based recommendation algorithm, new Al alloys were designed that had an excellent combination of strength and ductility with a yield strength (YS) of 712 MPa and elongation (EL) of 19%, exhibiting a homogeneous distribution of nanoscale precipitates hindering dislocation movement during deformation. Adding Mg and Cu was found to be the critical factor that decides the relative ratio of strength and EL. We also demonstrate an explainable A.I. (XAI) system that reveals the relationship between input and output parameters. Our A.I. assistant system can accelerate the search for high-strength Al alloys for both experts and non-experts in the field of Al alloy design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.