Abstract
Direct tensile behavior of high performance fiber reinforced cementitious composites (HPFRCCs) at high strain rates between 10s−1 and 30s−1 was investigated using strain energy frame impact machine (SEFIM) built by authors. Six series of HPFRCC combining three variables including two types of fiber, hooked (H) and twisted (T) steel fiber, two fiber volume contents, 1% and 1.5%, and two matrix strengths, 56MPa and 81MPa, were investigated. The influence of these three variables on the high strain rate effects on the direct tensile behavior of HPFRCCs was analyzed based on the test results. All series of HPFRCCs showed strongly sensitive tensile behavior at high strain rates, i.e., much higher post cracking strength, strain capacity, and energy absorption capacity at high strain rates than at static rate. However, the enhancement was different according to the types of fiber, fiber volume content and matrix strength: HPFRCCs with T-fibers produced higher impact resistance than those with H-fibers; and matrix strength was more influential, than fiber contents, for the high strain rate sensitivity. In addition, an attempt to predict the dynamic increase factor (DIF) of post cracking strength for HPFRCCs considering the influences of fiber type and matrix strength was made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.