Abstract

The out-of-plane and in-plane compressive failure behavior of 4-step 3D braided composite materials was investigated at quasi-static and high strain rates. The out-of-plane and in-plane direction compressive tests at high strain rates from 800/s to 3,500/s were tested with the split Hopkinson pressure bar (SHPB) technique. The quasi-static compressive tests were conducted on a MTS 810.23 tester and compared with those at high strain rates. The comparisons indicate that the failure stress, failure strain and compressive stiffness both for out-of-plane and in-plane loading directions are rate sensitive. For example, the failure stress, failure strain and stiffness are 55.19 MPa, 6.70% and 1.35 GPa respectively as opposed to 145.00 MPa, 1.21% and 13.50 GPa respectively for strain rate of 2,500 s−1 under in-plane compression. The 3D braided composites have higher values of failure stress and strain for out-of-plane than for in-plane compression at the same strain rate; however, the in-plane compression stiffness is higher than that of out-of-plane compression at high strain rates. The compressive failure mode of 3D braided composites in the out-of-plane direction is mainly shear failure at various strain rates, while for the in-plane direction it is mainly cracking of matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call