Abstract

We report the recent advances and key requirements for high-efficiency tandem thin-film silicon solar cells composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell. The impact of inserting a low-refractive-index silicon-oxide (SiOx) film as intermediate reflecting layer (IRL) is highlighted. We show that refractive indexes as low as 1.75 can be obtained for layers still conducting enough to be implemented in solar cells, and without no additional degradation. This allows for high top-cell current densities with thin top cells, enabling low degradation rates. A micromorph cell with a certified efficiency of 12.63% (short-circuit current density of 12.8 mA/cm(2)) is obtained for an optimized stack. Furthermore, short-circuit current densities as high as 15.9 mA/cm(2) are reported in the amorphous silicon top-cell of micromorph devices by combining a 150-nm- thick SiOx-based IRL and a textured antireflecting coating at the air-glass interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.