Abstract

A double-pass forward configuration superfluorescent fiber source (SFS) based on erbium-doped photonic crystal fiber (EDPCF) with a high intrinsic mean wavelength stability is presented. The main factors of SFS instability with temperature variation are analyzed. Optimization of the high-stable SFS is achieved by combining high-performance EDPCF, optimal fiber length, and source structure with fine-tuning pump power. The temperature dependence of the SFS mean wavelength has been reduced to below 0.077 ppm/°C with temperature variation from 70 to −40 °C. To the best of our knowledge, this value is the closest to 0 ppm/°C in the reported references, and these new developments probably constitute an important step for high-accuracy interferometric fiber-optic gyroscope sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.