Abstract

A high-stable and broadband single-pass backward configuration superfluorescent fiber source based on erbium-doped photonic crystal fiber (EDPCF) is proposed. With the proper EDPCF length, pump power, and a gain flattening filter, we demonstrate that it is possible to create a high-stable and broadband erbium-doped superfluorescent photonic crystal fiber source (SPCFS). This was accomplished by replacing the conventional erbium-doped fiber with the EDPCF, the intrinsic thermal coefficient of which is four times less than the measured conventional erbium-doped fibers. The SPCFS showed that the total output power stability was less than 0.0337%, the 3-dB spectral width was broader than 42 nm, the output spectrum flatness was less than 1 dB, and the mean wavelength stability was less than 2.58 ppm over 6 h at temperatures from 24.3°C to 25.5°C, which approached the requirement for inertial-grade fiber optic gyroscopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call