Abstract

We present a paradigm in constructing very stable, faceted nanotube and fullerene structures by laterally joining nanoribbons or patches of different planar phosphorene phases. Our abinitio density functional calculations indicate that these phases may form very stable, nonplanar joints. Unlike fullerenes and nanotubes obtained by deforming a single-phase planar monolayer at substantial energy penalty, we find faceted fullerenes and nanotubes to be nearly as stable as the planar single-phase monolayers. The resulting rich variety of polymorphs allows us to tune the electronic properties of phosphorene nanotubes and fullerenes not only by the chiral index but also by the combination of different phosphorene phases. In selected phosphorene nanotubes, a metal-insulator transition may be induced by strain or by changing the number of walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.