Abstract

Lead-free halide perovskites possess excellent photoelectric properties, making them widely used in the photoelectric fields. Herein, lead-free double perovskite crystals (PCs) doped with manganese (Cs2NaInCl6:Mn2+) are successfully prepared by the more energy-efficient crystallization method. The crystals emit bright orange-red light under the ultraviolet (UV) lamp, showing unique optical properties. They have the highest photoluminescence quantum yield of 42.91%. The white light-emitting diodes (LEDs) are fabricated using these perovskite crystals, which show a color rendering index of 92 and external quantum efficiency (EQE) as high as 16.3%. Furtherly, perovskite-modified fiber paper made of aramid chopped fibers (ACFs) and polyphenylene sulfide (PPS) exhibited fluorescent properties under different conditions. This paper combines fiber composite technology with PPS fiber filter bags, which are widely used in environmental protection, for the first time and demonstrates functional fiber filter bags with fluorescent characteristics. This filter bag provides an idea for the automatic detection of industrial filtration. Meanwhile, after being exposed to industrial waste gas for 60h, the filter bag can maintain superior fluorescence performance. In this study, lead-free double perovskites are synthesized using an efficient method for preparing high-performance LEDs and high-stability fluorescent fibers. Concurrently, the application of perovskites in environmental protection is expanded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.