Abstract

Using the204Hg(α, 3n) reaction withα-particles of about 40 MeV, we have proved by applying nowadays conventionalγ-ray spectroscopy in-beam technique, that there are two isomeric states in205Pb at the excitation energies 5,161.3 and 3,195.5 keV having the half-lives 71±3 and 217±5 ns, respectively. These isomeric states have spins and parities 33/2+ and 25/2− and are mainly due to thei 13 2/−3 andi 13 2/−2 p 1 2/−1 configurations, respectively. This conclusion is supported by the experimentalg-factors of these states being −0.159±0.008 and −0.0676±0.0011, respectively. It is furthermore shown that theE2 effective neutron charge is the same forE2 transitions from the 33/2+ state in205Pb and from the 12+ state in206Pb as required by the assumption that the208Pb core is responsible for the totalE2 strength of the neutron holes, and that these states are due to thei 13 2/−3 andi 13 2/−2 configurations. The calculatedB(E3) values ofE3 transitions from isomeric states in205Pb and206Pb agree reasonably well with the experimental values as expected from the assumption that theE3-strength should come from particle coupling to the octupole states of the208Pb core. The energies of the six most well established excited states in205Pb with angular momenta in the region 19/2–33/2 were calculated using empirical single-particle energies, empirical two-particle interactions and angular momentum algebra. The average deviation between experimental and calculated energies is −3 keV and the root mean square deviation 6 keV as compared to the uncertainty ± 5 keV in the nuclear masses used in the calculation. For the orbits concerned the shell model is thus valid with an extremely high precision. The contribution of effective three-particle interaction in these orbits must consequently be less than about 5 keV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.