Abstract

A process of tunneling conduction and the spin-dependent resistivity change (so-called tunneling magnetoresistance effect) in the Fe-doped C60 film with a granular structure is investigated for the current-into-plane device. Cooperative tunneling (cotunneling) through several Fe nanoparticles is suggested to be operative at temperatures lower than 20K. By considering the effect of cotunneling on the magnetoresistance ratio, it is successfully shown that the spin polarization of tunneling electrons generated at the Fe/C60 interface is much higher than that in Fe crystal at low temperature in a similar fashion to that at the Co/C60 interface in the Co-doped C60 films. A strong temperature dependence of spin polarization is observed, suggesting a possible influence by the thermally induced disorders ascribed to the Fe atoms bonded with C60 in the C60Fe compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.