Abstract
The transition of Fe3+ ions from the high-spin (HS) state (S = 5/2) to the low-spin (LS) state (S = 1/2) has been observed in the BiFeO3 multiferroic crystal at high pressures in the range 45–55 GPa. This effect has been studied in high-pressure diamond-anvil cells by means of two experimental methods using synchrotron radiation: nuclear resonant forward scattering (NFS or synchrotron Mossbauer spectroscopy) and FeKβ high-resolution X-ray emission spectroscopy (XES). The HS-LS transition correlates with anomalies in the magnetic, optical, transport, and structural properties of the crystal. At room temperature, the transition is not stepwise, but is extended in a pressure range of about 10 GPa due to thermal fluctuations between the high-spin and low-spin states. It has been found that the transition of the BiFeO3 insulator to the metal occurs only in the low-spin phase and the cause of all phase transitions is the HS-LS crossover.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have