Abstract
An optically scanning electromagnetic field probe system consisting of an electro-optic or magneto-optic crystal and a galvano scanner is proposed for high-speed electromagnetic field distribution measurements. We used this technique to measure electromagnetic field distributions near printed circuit boards or ICs to address electromagnetic compatibility problems or in designing electronic devices. With our scanning system, we can measure the electric field intensities of about 40,000 points with an area of 40 x 40 mm in about 3 minutes (4 ms per point) up to 2.7 GHz. We measured the electric near-field distribution above a five-split transmission line using a cadmium telluride (CdTe) electro-optic crystal. The measurement results showed that the spatial resolution of the system was less than 400 μm in the case of a common current with a crystal thickness of 1 mm. The electric near-field distribution above a microstrip line filter was measured using LiNbΟ 3 electro-optic crystal. Changes in the distribution according to the frequency were observed. The experimental results obtained using this system were compared with simulation results obtained using a finite-difference time-domain method. The overall results indicated that the measurement system is capable of accurately measuring electric near-fields. We also discuss the invasiveness of the measurement system, due to the electro-optic crystals, in terms of both the experimental and simulated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.