Abstract

Deals with the development of aerostatic‐cum‐aerodynamic hybrid conical bearings, running at 70,000 r.p.m., suitable for supports of high speed spindles. Conical bearing bush is designed for two plane admission, with eight holes in each plane, with a semi cone angle of 108. In case of static response, the interactions between the major parameters, are projected on 3D response surface curve. The results give the magnitude of radial load to get the benefit of optimally minimum eccentricity ratio. Experimental results show close agreement with the theoretical work in regard to “no‐rotation” cases. The exponential relationship existing between eccentricity ratio, radial load and supply pressure is generalised. Rigidity for the bearings developed, as seen from the response surface, supports the observations of previous researchers. For the use of designers, vital operational parameters have been tabulated. Estimated and experimental values of these parameters compare reasonably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.