Abstract
Different from the conventional logistics service network design problem, we design a fast logistics service network based on high-speed railway. An integrative optimization model which is applicable for solving practical problems is established. This paper simultaneously considers three subproblems: Train timetabling, freight flow assignment and electrical multiple units (EMU) routing plan, in which the objectives are simultaneous to minimize the total train travel time, the operation cost and transportation cost of freight transport, the number of freight EMU and the number of maintenance tasks. The constraints imposed in the model include space-time path resource assignment restriction, node operation capability, train safety interval time, train connection time restriction, freight service time window, train loading capacity restriction and EMU routing restriction. Based on the thoughts of divide and conquer, the original problem is decomposed by using the decomposition mechanism of the Lagrange relaxation algorithm to solve the integrated optimization model. To verify the feasibility and effectiveness of the model and algorithm proposed in this paper, a case study is conducted based on Harbin Dalian high-speed railway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have