Abstract

High-speed spatial modulation of light is the key technology in various applications, such as optical communications, imaging through scattering media, video projection, pulse shaping, and beam steering, in which spatial light modulators (SLMs) are the underpinning devices. Conventional SLMs, such as liquid crystal (LC), digital micromirror device (DMD), and micro-electro-mechanical system (MEMS) ones, operate at a typical speed on the order of several kilohertz as limited by the slow response of the pixels. Achieving high-speed spatial modulation is still challenging and highly desired. Here, we demonstrate a one-dimensional (1D) high-speed programmable spatial light modulator based on the electro-optic effect in lithium niobate thin film, which achieves a low driving voltage of 10 V and an overall high-speed modulation speed of 5 MHz. Furthermore, we transfer an image by using parallel data transmission based on the proposed lithium niobate SLM as a proof-of-principle demonstration. Our device exhibits improved performance over traditional SLMs and opens new avenues for future high-speed and real-time applications, such as light detection and ranging (LiDAR), pulse shaping, and beam steering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.