Abstract
This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20μm polystyrene particles and 5μm yeast cells with a rate of up to 1000particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180μm×65μm and 100μm×43μm, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1D-focusing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.