Abstract

In fermentation processes, changes in yeast cell count and substrate concentration are indicators of yeast performance. Therefore, monitoring the composition of the biological suspension, particularly the dispersed solid phase (i.e., yeast cells) and the continuous liquid phase (i.e., medium), is a prerequisite to ensure favorable process conditions. However, the available monitoring methods are often invasive or restricted by detection limits, sampling requirements, or susceptibility to masking effects from interfering signals. In contrast, ultrasound measurements are non-invasive and provide real-time data. In this study, the suitability to characterize the dispersed and the liquid phase of yeast suspensions with ultrasound was investigated. The ultrasound signals collected from three commercially available Saccharomyces yeast were evaluated and compared. For all three yeasts, the attenuation coefficient and speed of sound increased linearly with increasing yeast concentrations (0.0-1.0 wt%) and cell counts (R2 > 0.95). Further characterization of the dispersed phase revealed that cell diameter and volume density influence the attenuation of the ultrasound signal, whereas changes in the speed of sound were partially attributed to compositional variations in the liquid phase. This demonstrates the ability of ultrasound to monitor industrial fermentations and the feasibility of developing targeted control strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.