Abstract
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is ideally suited for highly pipelined, adaptive digital filter implementations. In this paper, we present an efficient method to determine the delays in the DLMS filter. Furthermore, in order to achieve fully pipelined circuit architectures for FPGA implementation, we transfer these delays using retiming. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which allow a 66.7% reduction in delays and 5 times faster convergence time thereby giving superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughput rate of 182 Msample/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.